

American Institute of Aeronautics and Astronautics

1

A Closed-Form Solution to
Multi-Point Scheduling Problems

Larry Meyn*
NASA Ames Research Center, Moffett Field, CA, 94035-0001

A closed-form algorithm is proposed as a tool by which aircraft can be
scheduled through an arbitrary number of scheduling points within
allowable time constraints. The algorithm supports the specification of one or
more time constraints at each point, along with minimum and maximum
allowable travel-time constraints between points. A constraint algebra that
simplifies the expression of time constraint calculations is used to formulate
the algorithm. An example is then presented of an automated scheduler that
uses constraint algebra and the new algorithm. The scheduler implements
prospective operations for San Francisco International airport that is able to
accommodate formation landings of aircraft pairs on closely spaced parallel
runways for specified speed and timing constraints. A simulation of the
scheduler shows that allowing flights to land in formation on two closely
spaced parallel runways can reduce flight delays by 72% to 98% by enabling
use of a second runway under adverse weather conditions when compared
with the current single runway operation.

I. Introduction
HE Federal Aviation Administration has a goal to improve the utilization of available airport
capacity without decreasing safety or increasing controller workload.1 One way to address

this goal is by extending and improving the assignment of scheduled times of arrival for flights
to a series of specific points along their routes. These points can include fixes, arcs, runway
thresholds and boundary crossings. More scheduling points than are used in the current system
will be needed. The scheduled times of arrival at each point will need to satisfy multiple
scheduling constraints and meet physically realizable minimum and maximum travel-time
constraints between points.

Several approaches for determining viable schedules have been investigated. One approach is
to calculate them directly from the constraints, by use of a closed-form method. While closed-
form solutions have been used for two-point schedules,2-5 they have not been used to determine
schedules with more than two points. The multi-center scheduler presented by Landry6 breaks
up the scheduling problem into loosely coupled sub-problems to reduce its complexity. A
scheduler developed for airborne merging and spacing solves the problem by iteratively trying
possible scheduling times.7 Others have utilized optimization routines8,9 and commercial
constraint solvers.10 One possible reason why closed-form algorithms are not used for multi-
point scheduling is the expectation that they might be too complex to implement. Such a

*Aerospace Engineer, Systems Modeling and Optimization Branch, MS 210-15, and AIAA
Associate Fellow.

T

American Institute of Aeronautics and Astronautics

2

possibility could easily be inferred from the apparent complexity of the closed-form, two-point
scheduling algorithms, such as those developed by Neuman2,3 and Wong.4

One way to reduce the complexity of scheduling calculations is to recast the equations by use
of a constraint algebra, as was done previously for Neuman’s two-point scheduler.5 Because the
constraint algebra simplifies the expression constraint calculations in a manner similar to matrix
algebra, the perceived complexity of Neuman’s algorithm is significantly reduced. The resulting
implementation of the software for scheduling calculations was more concise and easier to
follow than Neuman’s original code. In this paper, the same constraint algebra is used to develop
a concise, closed-form scheduling algorithm that is applicable to scheduling problems with any
number of points.

The next section of this paper presents the development of the closed-form, multi-point
scheduling algorithm in three subsections. First, an example problem is posed and the steps
required to solve the problem are described. An overview of the constraint algebra is then
presented, followed by a detailed description of the new, closed-form, multi-point scheduling
algorithm. Section III describes a simulation that uses the new algorithm for scheduling very
closely spaced parallel approach operations at San Francisco International Airport. The results
from the simulation are then presented in section IV, followed by some concluding remarks in
section V.

II. Multi-Point Scheduling

A. Example Multi-Point Scheduling Problem
Multi-point scheduling problems can be solved by propagating scheduling constraints to all

points along a route in both the downstream and upstream directions. The steps required to
propagate the constraints are described for a notional scheduling problem. Figure 1 depicts a
“node-link” diagram for a scheduling problem with four scheduling points, designated A, B, C
and D. The links represent paths between the points. The links are directional, as shown by the
arrowheads, and the flights passing through B, C and D may have origin and destination points
that are not shown. A master schedule is maintained, to reserve blocks of time at each point for
previously scheduled flights. These blocked schedule times are constraints on the schedule times
available at each point. The problem is to generate viable scheduling times for a flight arriving at
A at time 0, and then continuing on
through points B, C and D. In
addition to the blocked schedule
times at each point, the minimum
and maximum travel-times between
sequential points further constrain
the solution.

The constraints for this example are depicted in Fig. 2(a). Each point has a schedule time-line
shown here with vertical grid markings for a time scale with arbitrary units. The red blocks
represent schedule times that are, for example, unavailable due to previously scheduled flights.
The green circle represents the arrival time of the flight at point A. This flight has a minimum
travel-time of two time units between points A and B, and a maximum travel-time of “None,”
which indicates that indefinite holding is permitted. The minimum and maximum travel-times
between points B and C are two and three time units, respectively. The minimum and maximum

Figure 1. Node-link diagram for the example.

A B C D

American Institute of Aeronautics and Astronautics

3

 (a)

 (b)

 (c)
Figure 2. Schedule constraint propagation. (a) The dashed line shows the earliest estimated time
of arrival based solely on minimum travel-time between points A, B, C and D. Minimum and
maximum travel-times between points are specified. A maximum of “None” means that holding is
permitted. The red rectangles represent unavailable schedule times at each point. (b) The yellow
shaded regions represent feasible scheduling windows as travel-time and point schedule constraints
are propagated downstream. (c) The blue shaded regions show the propagation of constraints
upstream. The regions where the yellow and blue regions overlap represent viable scheduling
windows that satisfy all constraints.

American Institute of Aeronautics and Astronautics

4

travel-times between points C and D are one and two time units, respectively. The blue dashed
line represents the schedule “path” for the earliest, unimpeded time of arrival at each point. This
path has an available schedule time at point D, but this path violates scheduling restrictions at
points B and C.

The propagation of scheduling constraints downstream, along the route from A to D is shown
in Fig. 2(b). The yellow shaded region between points A and B is the “window” of potentially
viable schedule times between A and B, given the arrival time constraint at A. The green circle
identifies the arrival time at A. The minimum travel-time between A and B defines the lower
bound of the scheduling window between A and B. The upper bound of the window is defined
by the maximum travel-time, which in this case is unbounded. At point B, the reachable times of
the scheduling window are constrained by the blocked schedule times #1 and #2. Based on these
constraints, there are two scheduling windows between B and C. Again, the lower bounds are
defined by the minimum travel-time and the upper bounds are defined by the maximum travel-
time. It should be noted that schedule block #1 creates an unreachable range of schedule times at
point C. Next, the reachable times at point C are constrained by the blocked schedule times #3
and #4, which results in three scheduling windows. These are then propagated to point D and
constrained by the blocked schedule times #5 and #6. This completes the downstream
propagation of constraints, which results in three viable scheduling ranges at point D.

To complete the identification of feasible scheduling windows, the viable scheduling ranges at
point D are propagated back upstream, as shown in Fig. 2(c). The blue shaded regions between
adjacent points illustrate how downstream constraints are propagated upstream. Areas where
these blue regions overlap the yellow, downstream propagation regions are shown as green. In
propagating schedule constraints upstream, the lower bounds of the reachable upstream schedule
time windows are defined by the maximum travel-time, and the upper bounds are defined by the
minimum travel-times. For a schedule to be viable, it must satisfy both downstream and
upstream constraints. In Fig. 2(c), the viable scheduling windows are the green areas, where the
downstream propagation regions, shown in yellow, and upstream propagation regions, shown in
blue, overlap.

B. Application of Constraint Algebra to the Example
The foregoing example shows how constraint propagation can be performed manually. The

process can also be programmed by explicitly testing each individual constraint in the sequence
described. However, the constraint algebra described in the appendix of Ref. 5 can be used to
represent these calculations more concisely. The algebra represents time constraints as ranges of
allowable schedule times at points or travel-times between points. The simplest constraint is a
single pair of values that represent the minimum and maximum limits of a viable time range. In
addition to numerical values, either limit can be set to a value of “None” to indicate that the limit
has no constraining value. Constraints representing scheduling ranges at a point can consist of
multiple time range pairs, while constraints representing the travel-time range between points
should consist of a single time range pair.

The constraint algebra defines the “&” operator to represent the logical “and” operation for
combining two sets of scheduling constraints, as well as the “|” operator to represent logical “or”
operation. A logical “not” operation is also defined. The “+” operator in the expression

€

A + ab()
, is used to propagate the schedule-time constraints at A downstream using the travel-time

American Institute of Aeronautics and Astronautics

5

constraint given by

€

ab . This is defined as adding the minimum travel-time constraint of

€

ab to
each minimum schedule-time constraint in A, and adding the maximum travel-time constraint of

€

ab to each maximum schedule-time constraint in A. The “-” operator in the expression

€

B − ab(),
is used to propagate the schedule-time constraints at B upstream using the travel-time constraint
given by

€

ab . This is defined as subtracting the maximum travel-time constraint of

€

ab from each
minimum schedule-time constraint in B, and subtracting the minimum travel-time constraint of

€

ab from each maximum schedule-time constraint in B. The “+” and “-” operators also support
the addition of scalar values to constraints, as defined in Ref. 5.

Equation (1) prescribes the initial constraint at point A, which is represented by the variable
Ai. The subscript “i” indicates that it is an initial constraint value. The value (0,0) indicates that
the arrival time at A is precisely zero, which is the start time for this example. Equations (2)-(4)
provide the initial constraint values for points B, C and D. For convenience, these are defined in
terms of the blocked scheduled range pairs for the blocked ranges shown in Fig. 2. The “not”
operator is used to convert them from blocked schedule range pairs to allowable schedule range
pairs. For example, the initial constraint for point B, given by Eq. (2), would be
[(None,0.5),(2.5,7),(9,None)] after the application of the not operator. This indicates that an
allowable schedule time would be before 0.5, between 2.5 and 7, or after 9.

€

Ai = 0,0()[] (1)

€

Bi = not 0.5,2.5(), 7,9()[] (2)

€

Ci = not 3,5(), 7,9()[] (3)

€

Di = not 1,3(), 5.5,8(), 11,13()[] (4)

Equation (5) defines variable,

€

ab , as the travel-time constraint between points A and B. Travel-
time constraints are defined as a single pair of constraint values representing the minimum and
maximum travel-times. In this case, the minimum travel-time is two units, and the maximum
travel time is None, which means the flight can be delayed indefinitely along this link. Equations
(6) and (7) give the travel-time constraints between points B and C, and between points C and D.

€

ab = 2,None()[] (5)

€

bc = 2,3()[] (6)

€

cd = 1,2()[] (7)

The point constraints in Fig. 2(b) are propagated downstream by use of the travel-time
constraints between points. The propagation of the constraint at point A to point B, via the travel-
time constraint,

€

ab , is given by the term (Ai +

€

ab) in Eq. (8). The result is combined with the
initial constraint at point B using the logical “&” operator. The resulting constraint value is
assigned to a new, temporary, constraint value for point B, designated Bt. The constraint value is

American Institute of Aeronautics and Astronautics

6

subscripted with the letter “t” because it is considered temporary as it does not include the
influence of downstream constraints. In a similar fashion, Eq. (9) is used to calculate a temporary
value for the constraint at C using constraints propagated from upstream. Equation (10)
completes the downstream propagation of constraints. Because there are no downstream points,
the result is subscripted with the letter “f ” to indicate that it is the final constraint value for point
D.

€

Bt = Ai + ab()& Bi (8)

€

Ct = Bt + bc()&Ci (9)

€

Df = Ct + cd()& Di (10)

In Fig. 2(c), the point constraints are propagated upstream by use of the travel-time
constraints between points. In Eq. (11), the final constraint at D is propagated upstream to C by
the term (Df -

€

cd). The “-” operator represents the calculations needed for upstream propagation
of the constraints. By use of the logical “&” operator, the result is combined with the previously
calculated constraint value, Ct. The result is the final constraint value for point C, designated Cf.
In a similar fashion, Eqs. (12) and (13) are used to propagate constraints upstream and calculate
the final constraint values for points B and A.

€

Cf = Df − cd()&Ct (11)

€

Bf = Cf − bc()& Bt (12)

€

Af = Bf − ab()& Ai (13)

Using software that implements the constraint algebra, the time constraint values given in
Equations (1)-(7) were entered into the propagation equations, Eqs. (8)-(13). Evaluation of these
equations produces the following values for the feasible schedule ranges at each point. These
values agree with those that were determined manually in Fig. 2(c).

€

Af = 0,0()[] (14)

€

Bf = 3,5(), 6,7(), 9,None()[] (15)

€

Cf = 6,7(), 9,10(), 11,None()[] (16)

€

Df = 8,9(), 10,11(), 13,None()[] (17)

American Institute of Aeronautics and Astronautics

7

C. The Multi-point Scheduling Algorithm
Equations (8)-(13) provide a solution for a four-point schedule. Similar sets of equations can

be easily developed for other scheduling point counts. For N points, 2(N-1) equations are needed.
To avoid having to generate customized equation sets for different numbers of scheduling points,
a recursive algorithm was developed, which is depicted in Fig. 3.

The code was written in the object-oriented, programming language Python, which supports
the creation of data structures called “objects” with specialized methods and operators. It utilizes
previously developed code5 that implements constraint objects that support logical operators for
combining constraints and the previously mentioned “+” and “-” operators for propagating
constraints in both the downstream and upstream directions. The “getConstraints” function
listed in Fig. 3, takes an input named “path,” which is an alternating list of point constraints
and travel-time constraints, ending with a final point constraint. Line 2 of the algorithm takes the
first three items of the list and assigns them to the variables “begin,” “link,” and “end.” The
variables “begin” and “end” are the constraint objects for the first two sequential points of the
list and “link” is the constraint object for the travel-time between them. In line 2, the
remainder of the “path” list is assigned to the variable “next.” Line 3 propagates the
“begin” constraint downstream by adding the “link” constraint and is then combined with the
“end” constraint using the “&” operator. The result is assigned to the variable, “newend.”
Line 4 tests to see if “next” is empty, which means the constraints have been propagated to the
end of the original constraints list given by “path.” If “next” is empty, then it returns a two-
item list, which is the seed value for the process used to propagate constraints to upstream points.

The remainder of the upstream propagation process, if needed, takes place if “next” is not
empty and begins in line 8. Here “newend” is pre-pended to the list “next” and is passed in a
recursive call to “getConstraints,” the result is assigned to the variable “conlist.” This
result is the list of the final downstream constraints including “newend.” In line 9, the current
value of “newend” is replaced by the first item in “conlist,” which has downstream
constraints included. In line 10, the constraints for “newend” are propagated upstream by

1 def getConstraints(path):
2 begin, link, end = path[:3]
3 next = path[3:]
4 newend = (begin+link)&end
5 if next == []: # End of the list
6 return [(newend-link)&begin,newend]
7 else:
8 conlist = getConstraints([newend]+next)
9 newend = conlist[0]
10 return [(newend-link)&begin] + conlist

Figure 3. Multi-point constraint propagation algorithm. The algorithm, as implemented
in the Python programming language, is presented here with line numbers added. The
algorithm takes a list, named path, consisting of alternating point constraints and travel-time
constraints, ending with a final reference point constraint. It returns a list of constraint objects,
one for each reference point, that represent the viable scheduling times.

American Institute of Aeronautics and Astronautics

8

subtracting “link” and then combined with “begin” using the “&” operator. This result is pre-
pended to “conlist” and then returned.

This ten-line algorithm is valid for any number of points, and the number of calculations
varies linearly with the number of points. Fig. 4 shows the feasible scheduling windows for an
example with nine scheduling points, eight travel-time constraints, and twenty-six blocked
schedule-times. This calculation only took 5ms on a single 3Ghz processor core. Computation
time for the entire calculation could likely be reduced by at least an order-of-magnitude if a
multi-threaded, compiled programming language were used instead of Python.

III. A Multi-Point Scheduling Simulation
To demonstrate the algorithm with a more relevant multi-point scheduling scenario than the

foregoing examples, a simple terminal area arrival simulation was developed. The scenario
chosen was adapted from a scenario developed for ongoing research on very closely spaced
parallel approach (VCSPA) operations.9,11-14 To study potential new procedures, a modified set
of Standard Terminal Arrival Routes for San Francisco International Airport was developed for
instrument approaches that allow the pairing of some flights for formation landings on runways

Figure 4. Plot of viable scheduling windows for a nine-point example problem. Blocked
schedule times are depicted as red bars for each scheduling point. The viable scheduling
windows are shown in green.

American Institute of Aeronautics and Astronautics

9

28L and 28R. Because these two runways are only
750 feet apart, simultaneous use is currently only
allowed under visual flight rules. Currently, when
visibility is poor, only one runway is used, which
reduces the airport’s arrival capacity by one-half.

The basic idea for VCSPA operations is presented
in Fig. 5, which has two aircraft on paired approach
paths. The leading aircraft has a straight-in approach
to runway 28L. The following aircraft flies along the
path shown. When the lead aircraft crosses the
coupling point, the autopilot of the following aircraft
couples with the leader in order to maintain constant
spacing within a safe zone. The safe zone is specified
as between five and twenty-five seconds in trail,
which is far enough behind the leading aircraft to
avoid a blunder by the leader and far enough forward
to avoid the hazard posed by the leader’s wake
vortices.13,14

The six arrival routes into San Francisco that were
developed for evaluation of VCSPA operations are
depicted in Fig. 6. Each route has a “split point,”
where a flight is either directed to runway 28L or it is
designated as a follower in a paired approach into to runway 28R. For the scheduling simulation,
there are four reference points along each route where time-based separation constraints are
enforced. These are the route entry points, the split points, the coupling points and the runway
thresholds. At the route entry points and the split points, the time separation constraints were set
to enforce five nautical mile
separations for the expected
aircraft speeds at these
locations. At the coupling points
and at the runway thresholds,
the time separation constraints
are set to enforce standard wake
separation distances,15 for the
expected approach and landing
speeds. All of these separation
constraints were represented as
constraint pairs and combined,
where necessary, by use of
constraint algebra operations.

The minimum travel-time
constraints between the points
were based on nominal speeds
and the maximum travel-time
constraints were assumed to be
10% greater than the nominal

Figure 6. Simulated terminal arrival routes for San
Francisco International Airport.

POINT REYES 1

OCEANIC TA

RISTI 4

MODESTO 3

YOSEM 1

BIG SUR 2

Split Points

Coupling Points

Runway Thresholds

Entry Points

Figure 5. VCSPA approach for
San Francisco

Coupling!

Point

Trailing!

Aircraft

6°

2 NM

Leading!

Aircraft

12 NM

28R28L

American Institute of Aeronautics and Astronautics

10

travel-times. Flights designated as follower and directed to runway 28R were further constrained
to be within five and twenty-five seconds of the leader’s scheduled arrival time at the coupling
point and at the runway threshold. It is also assumed that flights could be delayed any amount of
time prior to their arrival at the route entry points. To determine the allowable scheduling times
for each possible route, the point constraints and the travel-time constraints were combined into a
list for processing by the multi-point algorithm described in section II.C.

A simple event-based, first-come-
first-served scheduler was also
developed for the simulation. The
scheduler maintained a queue of
flights that were available for
assignment of scheduling times.
When a flight bound for San
Francisco crosses the planning-
horizon, shown in Fig. 7, the flight is
added to the scheduling queue. The
flight is first assigned an arrival route.
Then the unimpeded estimated time
of arrival (ETA) to the route entry
point is calculated, along with the
unimpeded runway threshold ETA.
When any flight in the scheduling
queue is determined to be within ten
minutes of it’s route entry point ETA,
a scheduling event is triggered. Then
the flights in the scheduling queue are
sorted by the order of their runway
threshold ETAs, and the flight with
the earliest ETA is chosen for scheduling. Blocked schedule-times at each point along a flight’s
route are determined from the scheduled arrival times of previously scheduled flights along with
separation times that provided the minimum required separation distances at the expected flight
speeds. The point constraints and travel-time constraints are evaluated for routes to both runways
28L and 28R by use of the multi-point scheduling algorithm. Flights are only assigned to 28R if
they can be follower aircraft in a paired approach. To enforce this rule, the route to 28R is only
assigned if the flight can meet the follower constraints when paired with a preceding flight
scheduled for 28L. If those constraints cannot be met, then there is no viable schedule to 28R and
the flight would be assigned the route to 28L. The earliest viable time of arrival for each point is
entered into the schedule and the flight is removed from the scheduling queue. Because flights
are scheduled in the order of the their runway arrival ETAs, it is possible that the flight that
triggered the scheduling event is not the first flight to be scheduled. If this is the case, then
additional flights are scheduled in the sorted order until the flight that triggered the scheduling
event is scheduled.

To simplify the problem, only scheduled arrivals into San Francisco were included in the
simulation and this list of flights is further reduced to only include aircraft equipped with jet
engines. A total of 362 flights, derived from scheduled arrivals for April 3, 2006 were simulated
in a scenario representing current day traffic. To simulate a future scenario with twice the traffic,

Figure 7. The 200 nmi radius planning-horizon
centered on San Francisco International Airport.

American Institute of Aeronautics and Astronautics

11

a second scenario was created where each flight in the first scenario was entered twice, but with
the nominal arrival time of the second flight entry is offset by five minutes from the first. Both of
these scenarios were simulated with and without VCSPA operations enabled.

IV. Simulation Results
The simulation provided scheduled arrival times at each reference point for each flight along

an available route. For each scenario simulation, the schedule times were individually evaluated
to ensure that proper separation times were enforced. These evaluations found no separation
violations, which is an indication that the scheduling constraints were properly enforced. Table 1
presents a summary of total and average delay times predicted by the simulation for each
scenario. For the current day, “1x Traffic,” traffic load, when VCSPA formation landings were
enabled, the total and mean delays are reduced by 72% when compared to the single runway
arrival operations that are currently allowed when visibility low. When the traffic load is
doubled, the delay reduction is 98% when VCSPA operations are enabled. The 1x traffic
scenario, with VCSPA formation landings, has 44 formation landings, while the 2x traffic
scenario has 194 formation landings.

V. Concluding Remarks
It was demonstrated that multi-point, time-based scheduling problems, for a series of points

with both scheduling time constraints and travel-time constraints, can be solved by constraint
propagation. A previously developed constraint algebra, that represents the combination and
propagation of constraints, is used to develop a new, closed-form, multi-point scheduling
algorithm. The algorithm provides all potential scheduling windows for any number of points
with multiple scheduling constraints at each point. The algorithm is fast and computation time
scales linearly with the number of reference points.

This algorithm was used to develop a scheduling simulation for flights into San Francisco
International Airport for very closely spaced parallel approach operations that allow formation
landings. The first-come, first-served scheduler developed is able to identify numerous
formation-landing pairs for a network of approach routes, each having four scheduling points.
This preliminary study showed that delay reductions of 72% to 98% might be feasible by
enabling the use of a second parallel runway under adverse weather conditions.

Use of constraint algebra and the multi-point scheduling algorithm made it very easy to
develop a first-come, first-served scheduler for a relatively complex route structure. The ability
to quickly calculate closed-form scheduling solutions for a given sequence of flights should also
be useful in developing more optimal schedulers. One application would be schedulers that
implement constrained position shifting,16 which allow limited modifications to a first-come,
first-served sequence. However, any optimization scheme that primarily operates by permutation
of scheduling order could potentially benefit from rapid, closed-form, scheduling calculations.

Table 1. Total and average delay for scenarios with and without VCSPA operations.

 Without VCSPA With VCSPA
Traffic Load Total Delay (hr) Mean Delay (min) Total Delay (hr) Mean Delay (min)

1x Traffic 4.7 0.8 1.3 0.2
2x Traffic 902 75 13.5 1.1

American Institute of Aeronautics and Astronautics

12

References
1Federal Aviation Administration, “Time-Based Flow Management (TBFM): SYSTEM SPECIFICATION DOCUMENT

(SSD),” URL: https://faaco.faa.gov/attachments/Section_J-3.pdf [cited 2 June 2010].
2Neuman, F., and Erzberger, H., “Analysis of Sequencing and Scheduling Methods for Arrival Traffic,” NASA Technical

Memorandum 102795, Ames Research Center, 1990.
3Neuman, F., and Erzberger, H., “Analysis of Delay Reducing and Fuel Saving Sequencing and Spacing Algorithms for

Arrival Traffic,” NASA Technical Memorandum 103880, 1991.
4Wong, G. L., "The Dynamic Planner: The Sequencer, Scheduler, and Runway Allocator for Air Traffic Control

Automation," NASA TM-2000-209586, April 2000.
5Meyn, L. and Erzberger, H, “Airport Arrival Capacity Benefits Due to Improved Scheduling Accuracy,” Proceedings of the

AIAA 5th Aviation, Technology, Integration, and Operations Conference, AIAA, Washington, DC, 2005.
6Landry, S., Farley, T., Foster, J., Green, S., Hoang, T., and Wong, G., "Distributed Scheduling Architecture for Multi-Center

Time-Based Metering," AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum, AIAA,
Washington, DC, 2003.

7Santos. M, Feinberg, A., Zhang, Y., Teng, Y., Chen, J., Nigam, N., and Smith, J., "Scheduling the Use of Airborne Merging
and Spacing Along Multiple Converging Routes to an Airport," AIAA Modeling and Simulation Technologies Conference and
Exhibit, AIAA, Washington, DC, 2010 (to be published).

8Anagnostakis, I., Clarke, J-P., Bohme, D., and Volckers, U., "Runway operations planning and control sequencing and
scheduling," System Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference, 3-6 Jan. 2001.

9Kupfer, M., "Scheduling Aircraft Landings to Closely Spaced Parallel Runways," Eighth USA/Europe Air Traffic
Management Research and Development Seminar (ATM2009), Napa, CA, 2009.

10van Leeuwen, P., Hesselink, H., & Rohling, J., "Scheduling Aircraft Using Constraint Satisfaction," National Aerospace
Laboratory NLR, NLR-TP-2002-299, Amsterdam, 2002.

11Rossow, V. J, “Use of Individual Flight Corridors to Avoid Vortex Wakes,” AIAA Atmospheric Flight Mechanics
Conference, AIAA, Washington, DC, 2002.

12Rossow, V. J., Hardy, G. H., and Meyn, L. A., “Models of Wake-Vortex Spreading Mechanisms and Their Estimated
Uncertainties”, 5th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, AIAA, Washington D.C., 2005.

13Rossow, V. and Meyn, L, “Guidelines for Avoiding Vortex Wakes During Use of Closely-Spaced Parallel Runways,” 26th
AIAA Applied Aerodynamics Conference, AIAA, Washington D.C., 2008.

14Verma, S., Lozito, S., and Trott, G., "Preliminary Guidelines on Flight Deck Procedures for Very Closely Spaced Parallel
Approaches," International Council for the Aeronautical Sciences (ICAS) 2008 Congress, Anchorage, AK, 2008.

15Federal Aviation Administration, “Air Traffic Control Order 7110.65T,” URL:
http://www.faa.gov/documentLibrary/media/Order/7110.65TBasic.pdf [cited 2 June 2010].

16Balakrishnan, H. and Chandran, B., “Scheduling Aircraft Landings Under Constrained Position Shifting,” AIAA Guidance,
Navigation, and Control Conference and Exhibit, AIAA, Washington, DC, 2006.

